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Abstract
A real vector space combined with an inverse (involution) for vectors is
sufficient to define a vector continued fraction whose parameters consist of
vector shifts and changes of scale. The choice of sign for different components
of the vector inverse permits construction of vector analogues of the Jacobi
continued fraction. These vector Jacobi fractions are related to vector and
scalar-valued polynomial functions of the vectors, which satisfy recurrence
relations similar to those of orthogonal polynomials. The vector Jacobi fraction
has strong convergence properties which are demonstrated analytically, and
illustrated numerically.

PACS numbers: 02.30.Mv, 02.10.Kn, 02.90.+p

1. Continued fractions

An ordinary continued fraction is defined as repeated division and addition of numbers

A/B + C/D + E/F + · · · (1)

where the division is by everything to the right of the slash. Continued fractions have attracted
interest because they can provide rapidly convergent approximations for various arithmetic
quantities. For a survey of continued fractions see [1].

Inclusion of a variable in continued fractions produces functions of a complex variable,
for example a Jacobi continued fraction with the complex variable z, when the {an} are all real
and the {βn} are all positive in,

1/z − a0 − β1/z − a1 − β2/z − a2 − β3/z − · · · (2)

This continued fraction is closely related to orthogonal polynomials [2] and Gaussian
quadrature [3].

The broad motivation for this work is the approximation of distributions and functions on
vector spaces, analogous to the approximation of weight distributions and smooth functions
by Jacobi fractions and the polynomials associated with them. In this work, we develop a
3 Permanent address: 31 Roft Street, Oswestry SY11 2EP, UK.
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vector continued fraction which we show has convergence properties similar to those of the
Jacobi fraction.

While vector division might seem necessary for a vector continued fraction, we find
interesting properties using only a generalized inverse of a vector. It seems that a real vector
space together with an inverse for vectors is the minimum algebraic structure necessary to
define a continued fraction.

This paper begins with the definition of a generalized inverse for vectors and then applies
this to the vector generalization of continued fractions of the Jacobi type. The next three
sections develop polynomial functions of vectors, the associated Christofel–Darboux identity,
and a theory of the convergence of these fractions. The penultimate section of the paper
contains analytic and numerical examples of convergence and other properties of these vector
continued fractions, while the final section contains remarks about quadrature and geometric
algebra.

2. Definition of an inverse for a vector

The inverse (involution) 1/Z of a vector Z has the property that the inverse of the inverse,
1/(1/Z) is the original vector Z. A simple multiplicative inverse of a vector Z can be defined
in terms of the magnitude |Z| of Z and a self-inverse (symmetric orthogonal) transformation
σ ,

1/Z = σZ/|Z|2. (3)

(We define this inverse in terms of a norm although that is not necessary in general.) Because
σ is self-inverse, it has a complete set of eigenvectors, and each eigenvalue is ±1. For Z
one-dimensional, the inverse in equation (3) reduces to the usual inverse for real numbers if
σ is +1, and to the usual inverse for imaginary numbers if σ is −1. For multi-dimensional
Z, components of eigenvectors with eigenvalue +1 (the positive eigenspace) behave like real
numbers, and those of eigenvectors with eigenvalue −1 (the negative eigenspace) behave like
imaginary numbers. For Z two-dimensional with σ having eigenvalues +1 and −1, this inverse
is the same as the reciprocal of a complex number, independent of complex multiplication;
and for Z four-dimensional with σ having eigenvalues +1, −1, −1, −1, this inverse is the
same as the reciprocal of a quaternion, independent of quaternion multiplication.

This inverse is related to the Moore–Penrose inverse [4]. It was the basis of a
mechanical linkage called the Peaucellier inversor [5], and is a special case of the Cremona [6]
transformation. As with complex numbers, the zero vector 0 can be given a unique inverse,
the infinite vector ∞.

3. A vector continued fraction of Jacobi type

Using the vector inverse defined above, continued fractions of the Jacobi type can be
generalized for vectors of dimension greater than 2, provided that σ has at least one positive
eigenvector and one negative eigenvector. In order to demonstrate the convergence properties
of these fractions, we choose one negative eigenvector of σ as the embedding eigenvector,
denoted in what follows by y and analogous to the role of the root of −1 for ordinary Jacobi
fractions. It is also convenient to subsume σ in the definition of the conjugate Z∗ of the
vector Z,

Z∗ = σZ (4)

which reduces to the complex conjugate when σ has one positive and one negative eigenvalue.
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For shifts {An} which have no components of y, scales {βn} which are all positive real
numbers, and a variable vector Z, the Jacobi form of the vector continued fraction (JVF) is,

R(Z) = β0/Z − A0 − β1/Z − A1 − β2/Z − A2 − · · · − βn/Z − An − · · · (5)

where the slash indicates the inverse of the entire expression to its right. It is shown below that
this has properties similar to the Jacobi fraction. Note that the embedding eigenvector y may
be chosen to be any vector in the negative eigenspace of σ provided that it has no components
of the shifts {An}. This does not preclude the shifts {An} from having components in the
negative eigenspace of σ , it simply precludes y from being one of those eigenvectors, and
requires that there be at least one vector in the negative eigenspace of σ for which the shifts
{An} have no component.

The JVF has an orientation which is the analogue of the Herglotz [7] property of the
Jacobi fraction, that the y-component of the JVF is opposite in sign to that of Z. First separate
the vector space containing Z into two half spaces, �+ with a positive component of y and
�−.

with a negative component of y. We say that vectors with zero component of y lie on the
boundary between the half spaces. Now consider a single level of the fraction, β/Z − A − T,
with T replacing the tail of the fraction. Assume that Z is in �+, and suppose that T, which is
itself a JVF, is in �−, then Z − A − T is also in �+, provided that A is on the boundary. Since
Z − A − T is in �+, its inverse and its inverse multiplied by a positive β, β/Z − A − T, are
both in �− which was what was to be shown. A similar argument shows that when Z is in �−,
the JVF is in �+.

An important consequence of the above orientation property is that zeros and infinities of
the JVF can occur only when Z is in the boundary between �+ and �−, making the behaviour
of the JVF on the boundary of particular interest. The argument is simple and analogous to
that for ordinary Jacobi fractions. If Z is in �+, then R(Z) must be in �−, excluding 0 and ∞
from the possible values of R(Z) because neither R(Z) nor 1/R(Z) can take any value with
a zero component of y. Since y can be any vector in the negative eigenspace containing no
component of the shifts, this orientation property restricts the zeros and infinities of the JVF
to values of Z which contain components of the shifts or are in the positive eigenspace.

The shift, inversion, and scaling at each level of a JVF, β/Z − A − T, may be viewed as
a transformation which takes the tail of the fraction, vector T, to another vector. Since σ in
equation (3) is orthogonal, the inverse defined from it preserves angles between vectors and so
is conformal [8]. The shift part of the transformation Z − A − T clearly preserves angles, and
multiplication by β does not change angles, so each level of the JVF preserves angles making
their composition, the whole fraction, a conformal transformation of its tail.

4. Polynomial functions of vectors

Finite Jacobi fractions can be expressed as ratios of orthogonal polynomials, and this carries
over to JVFs to the extent that we show in this section how the squared magnitude of a JVF
can be expressed as the ratio of a numerator polynomial, related to orthogonal polynomials
of the second kind [9], and a denominator polynomial, related to orthogonal polynomials of
the first kind [9]. Polynomial functions of vectors are introduced here as a convenient way to
specify the convergence properties of the JVFs, just as orthogonal polynomials are used for
the convergence of Jacobi fractions.

In order to define polynomials, we need to define fragments of continued fractions. Given
a set of shifts {An} and positive real scales {βn}, define the forward fragments of the JVF as

R(m,n)(Z) = 1/Z − Am − βm+1/Z − Am+1 − · · · − βn/Z − An (6)
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for m � n and 0 otherwise, together with the reverse fragments,

S(m,n)(Z) = 1/Z − Am − βm/Z − Am−1 − · · · − βn+1/Z − An (7)

for m � n and 0 otherwise.
Different fragments have different zeros and infinities, but because R(m,n)(Z) is 1/Z −

Am − βm+1R(m+1,n)(Z), the zeros of R(m,n)(Z) occur at the infinities of R(m+1,n)(Z), and similarly
for reverse fragments. Using this property, we construct a first kind (denominator) of scalar-
valued, vector polynomial,

pN(Z) = {1/|R(0,N−1)(Z)|2}{1/|R(1,N−1)(Z)|2} · · · {1/|R(N−1,N−1)(Z)|2} (8)

which is a polynomial in the sense that it has no infinities for finite Z. It is monic and of
degree 2N in the sense that it behaves like |Z|2N for large |Z|, and its zeros are the infinities of
R(0, N−1)(Z).

Similarly, we may define a second kind (numerator) of scalar-valued vector polynomial,

qN−1(Z) = {1/|R(1,N−1)(Z)|2}{1/|R(2,N−1)(Z)|2} · · · {1/|R(N−1,N−1)(Z)|2}. (9)

Again it has no infinities for finite Z, is monic, and of degree 2(N − 1) in the above sense. It
has zeros at the infinities of R(1, N−1)(Z) which are also the zeros of R(0, N−1)(Z). Now dividing
equation (9) by equation (8) gives,

qN−1(Z)/pN(Z) = |R(0,N−1)(Z)|2. (10)

As with orthogonal polynomials, it is convenient to construct these vector polynomials
from a recurrence whose parameters are those of the JVF in order of increasing index. In
order to accomplish this we need to transform forward fragments into reverse fragments. This
process begins with the identity,

|({1/[|R(n+1,N−1)(Z)|S(n,0)(Z)]} − βn+1R(n+1,N−1)(Z)/|R(n+1,N−1)(Z)|)|2
= |({1/[|S(n,0)(Z)|R(n+1,N−1)(Z)]} − βn+1S(n,0)(Z)/|S(n,0)(Z)|)|2 (11)

which is simply that the magnitude of the sum of two vectors is unchanged by interchanging
the orientations of the two vectors, given by R(n+1, N−1)(Z) and S(n,0)(Z). Factoring
1/|R(n+1, N−1)(Z)|2 from the LHS, 1/|S(n,0)(Z)|2 from the RHS of equation (11); replacing
1/R(n+1, N−1)(Z) by Z − An+1 − βn+2R(n+2,N−1)(Z), and then replacing Z − An+1 − βn+1S(n,0)(Z)
by 1/S(n+1,0)(Z) gives,

|{[1/S(n,0)(Z)] − βn+1R(n+1,N−1)(Z)}|2{1/|R(n+1,N−1)(Z)|2}
= {1/|S(n,0)(Z)|2}|{[1/S(n+1,0)(Z)] − βn+2R(n+2,N−1)(Z)}|2. (12)

Starting from the left in equation (8), replace 1/|R(0, N−1)(Z)|2 by |{[1/S(0,0)(Z)] −
β1R(1, N−1)(Z)}|2 using equations (6) and (7), apply equation (12), and continue with each
succeeding factor to obtain

pN(Z) = {1/|S(0,0)(Z)|2}{1/|S(1,0)(Z)|2} · · · {1/|S(N−1,0)(Z)|2}. (13)

Now the recurrence for the {pn(Z)} follows from the observation that

pN+1(Z)pN(Z) = |pN(Z)/S(N,0)(Z)|2
= |ZpN(Z) − ANpN(Z) − βNpN(Z)S(N−1,0)(Z)|2. (14)

It is convenient to define a sequence of vector-valued functions which are shown below to be
polynomials,

PN+1(Z) = pN+1(Z)S(N,0)(Z)∗. (15)
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The recurrence for these functions comes from replacing pN+1(Z) by pN (Z)/|S(n,0)(Z)|2
and noting that S(n,0)(Z)∗/|S(n,0)(Z)|2 is 1/S(n,0)(Z), which is (Z − AN)pN (Z) − βNPN(Z)∗ so
that

PN+1(Z) = (Z − AN)pN(Z) − βNPN(Z)∗ (16)

making it a vector polynomial for suitable initial conditions of the recurrence. The scalar-
valued and vector-valued vector polynomials are then related by equation (14), which becomes,

pN+1(Z)pN(Z) = |PN+1(Z)|2. (17)

A similar derivation of the recurrence relations for the numerator polynomials qN−1(Z)
can be avoided by observing that the numerator polynomials for R(0, N−1)(Z) are also the
denominator polynomials for R(1, N−1)(Z), and so satisfy the same recurrence relations as
the denominator polynomials, but with a shift in the index of the coefficients. Both sets of
polynomials satisfy the initial conditions that p−1(Z) = q−1(Z) = 0, P0(Z) = Q0(Z) = 0,
p0(Z) = q0(Z) = 1, together with the recurrence, equation (16), where AN+1 and βN+1 replace
AN and βN in the case of the {qN (Z)}. Equation (17) relates the scalar and vector-valued
polynomials of both kinds. The relation between these vector polynomials and ordinary
orthogonal polynomials is that the scalar-valued polynomial pN (Z) corresponds to the square
of the ordinary denominator polynomial of degree N, and the vector-valued polynomial PN (Z)
corresponds to the product of denominator polynomials of degree N and N − 1.

5. A Christoffel–Darboux identity

The above definitions of vector polynomials lead to a relation between products of polynomials,
similar to the Christoffel–Darboux identity [10], and used below to describe the convergence
of JVFs. The identity is

pn(Z)qn−1(Z)|[Pn+1(Z)/pn(Z)] − Qn(Z)/qn−1(Z)|2
= (βn)

2pn−1(Z)qn−2(Z)|[Pn(Z)/pn−1(Z)] − Qn−1(Z)/qn−2(Z)|2. (18)

The first step in deriving this relation is to substitute the recurrence in equation (16) for
Pn+1(Z) and QN (Z) to give

pn(Z)qn−1(Z)|[Pn+1(Z)/pn(Z)] − Qn(Z)/qn−1(Z)|2
= (βn)

2pn(Z)qn−1(Z)|[Pn(Z)∗/pn(Z)] − Qn−1(Z)∗/qn−1(Z)|2. (19)

To get equation (18), normalize PN (Z) and Qn−1(Z) using equation (17), and then interchange
the resulting unit vectors on the RHS of equation (18), which leaves the squared magnitude
unchanged, and simplify.

6. Convergence of Jacobi vector fractions

One of the advantages of the Jacobi form for continued fractions is its simple convergence
properties. As shown in section 3, the Herglotz property of the JVF allows zeros and infinities
only for Z with zero components of the embedding eigenvector y. It is shown below that
for Z which have non-zero components of y, the value of the fraction is limited to a finite
hypersphere, and that for infinite JVFs, the values of successive approximants lie within a
sequence of nested, kissing hyperspheres.

An infinite JVF converges for a particular value of Z provided the above sequence of
nested, kissing hyperspheres converges to a single point. This question is addressed here by
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1 level

2 levels

3 levels

Γ +

Figure 1. Schematic illustration of the mapping from T-space (shaded) to nested, kissing,
hyperspheres of RN (Z, T)-space (white) describing the convergence of a JVF.

calculating the dependence of the value of the fraction on the level at which the infinite tail of
the fraction is approximated, extending the approach used for scalar continued fractions [11].
Such an approximation to the infinite JVF is the fraction,

RN(Z, T) = 1/Z − A0 − β1/Z − A1 − · · · − βN−1/Z − AN−1 − T (20)

where the subscript N indicates the level at which the infinite tail of the fraction is replaced by
some T which takes arbitrary values in one half-space.

From the orientation property, discussed in section 3, the sign of the component of y can
be used to separate the vector space into two half-spaces, �+ for the positive components, and
�− for the negative components, with the boundary between them having a zero component
of y. If Z lies in �−, then the value of the infinite JVF must lie in the opposite half-space
�+, and similarly, the part of the fraction replaced by T must also lie in �+, which is the only
restriction on the value of T. The same is true if the two half-spaces are interchanged. Given
this, we can ask what is the image of �+ under the mapping 1/Z − AN−1 − T? Since this
mapping is an inversion through the point Z − AN−1, it maps hyperspheres to hyperspheres.
The half-space �+ of allowed values of T is a hypersphere of infinite radius, so it is mapped
to the interior of a hypersphere in �+.

We can ask how an additional level of the fraction changes this? Now replace T by βN

/Z − AN − T′ where T′ is the tail of a fraction with one extra explicit level. The image of
T′ due to βN/Z − AN − T′ is, by the above argument, a hypersphere within �+, and in this
case the infinite vector in T′ is mapped to 0 which lies on the boundary between half-spaces.
Since the next level of the fraction 1/Z − AN−1 − T maps �+ to the interior of a hypersphere,
it maps the image of T′ to a hypersphere which lies inside the image of T. Since 0 is on the
boundary of both the half-space and the image of βN/Z − AN − T′, 1/Z − AN−1 lies both on
the hypersphere which is the image of T and on the one which the image of T′. This is where
the hyperspheres which are successive images of T and T′ kiss. Starting this construction of
hyperspheres with the first level of an infinite continued fraction, figure 1 shows how each
successive level limits the possible values of the fraction to a new hypersphere which lies
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τ
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τ
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(Z, τ
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(Z, τ
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0

0

Figure 2. How the maximum and minimum of |RN (Z, T)| determine the diameter of the
hypersphere in RN (Z, T)-space (white) which is the image of � from T-space (shaded).

inside the previous one and touches it at exactly one point. If the limiting hypersphere is a
single point, the JVF converges for that Z.

We have now succeeded in dividing T-space, and its image RN (Z, T) under equation
(20), into allowed and forbidden regions. In the case of T-space, the allowed region is �+

and the forbidden region is �−; while the allowed region of RN (Z, T) is the interior of the
hypersphere shown in figure 2, which is the image of �+. To determine the radius of the
allowed RN (Z, T)-hypersphere, we calculate the difference between |RN (Z, τmax)| and |RN (Z,
τmin)| which are respectively the distances from the origin to the furthest and nearest points
on the hypersphere of allowed values of RN (Z, T), as shown in figure 2.

Consider hyperspheres in RN (Z, T)-space centred at RN (Z, T) = 0 and with constant
|RN (Z, T)|, which are images of hyperspheres in T-space according to the properties of the
JVF described above. For a given value of |RN (Z, T)|, the corresponding hypersphere in
T-space satisfies,

|RN(Z, T)|2 = [qN−2(Z)/pN−1(Z)]|QN−1(Z)/qN−2(Z) − T|2/|PN(Z)/pN−1(Z) − T|2
(21)

where the tail T is added to the shift AN−1 in the recurrences for qN−1(Z) and pN (Z), and the
result substituted in equation (10). Equation (21) is a quadratic in T from which the centre
τ c and radius tT of the hypersphere in T-space, whose image is the hypersphere of constant
|RN (Z, T)|, can be extracted by completing the square:

τc = (QN−1(Z) − |RN(Z, T)|2PN(Z))/(qN−2(Z) − pN−1(Z)|RN(Z, T)|2) (22)

and,

t2
T = |τc|2 + {(qN−2(Z)|RN(Z, T)|2|PN(Z)|2 − pN−1(Z)|QN−1(Z)|2)/

(pN−1(Z)qN−2(Z)2 − pN−1(Z)2qN−2(Z)|RN(Z, T)|2)}. (23)

The condition on τ c and tT that the image hypersphere have radius either |RN (Z, τmax)| or
|RN (Z, τmin)| is that the hypersphere in T-space should touch �+, which is that,

tT = τc · y. (24)
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Equation (24) combined with equations (22) and (23) gives a single quadratic equation for
|RN (Z, τmax/min)| and the difference between its two roots is twice the radius ρN (Z) of the
hypersphere of allowed values for RN (Z, T), 2ρN (Z) = |RN (Z, τmax)| − |RN (Z, τmin)|. The
square of the difference between the roots can be calculated directly from the coefficients of
the quadratic to give,

ρN(Z)2 = pN−1(Z)qN−2(Z)|PN(Z)/pN−1(Z) − QN−1(Z)/qN−2(Z)|2/[2y · PN(Z)}]2 (25)

in terms of the vector polynomials.
The above expression can be simplified using the identity in equation (18) repeatedly to

get,

ρN(Z)2 = (βN−1)
2(βN−2)

2 · · · (β2)
2(β1)

2/[2y · PN(Z)]2. (26)

A related, though less elegant, expression can be obtained for the centre of the hypersphere
which bounds the errors in the fraction.

The JVF converges when the radius of the error hypersphere ρN (Z) in equation (26) goes
to zero as N goes to infinity. For this it is necessary that Z lies outside the boundary of � so
that y · PN (Z) is non-zero. For those Z, PN (Z) increases exponentially with N because the
zeros of PN (Z) all lie in the boundary of �+. Provided that the {βN } do not grow fast enough
to cancel the growth of the {PN(Z)}, the infinite fraction converges.

7. Examples of vector fractions in three or two dimensions

We shall suppose that the shift vectors {An} of a JVF lie in a two dimensional space X with
axes parallel to the unit vectors x1 and x2 and that y denotes a unit embedding eigenvector
orthogonal to X. The first step in considering the convergence of such a JVF is to consider the
related JVF in which the {An} are replaced by their limiting values for large n, which provide
the examples discussed below.

The simplest example is a JVF with constant An which we can make zero by shifting the
origin of Z. If we use cylindrical polar coordinates r, y, φ it can be seen from symmetry that
the asymptotic JVF does not depend on the azimuthal coordinate φ which can be fixed. Since
1/Z is a vector which lies in the [r, y]-plane the dimensionality has effectively been reduced
to 2 and with an inverse 1/[r, y] = [r, −y]/(r2 + y2) which is equivalent to the inverse of the
complex variable u = r + iy. It follows that the behaviour of the asymptotic JVF in this case
reduces to that of an equivalent scalar continued fraction in the complex variable u.

Next we consider shifts which have a period p,

An+p = An, βn+p = βn. (27)

We shall show that the limit of an infinite JVF can be considered as the attractive fixed point
[12] of a function involving a p-level JVF.

Consider the function obtained by setting N = p in equation (20),

F(Z, T) = βpRp(Z, T) (28)

where Z has a non-zero component of the embedding eigenvector. Starting with T = 0 we now
consider the successive iterations F(Z, 0), F(2)(Z, 0), . . . F(N)(Z, 0), . . . where a superscript in
brackets denotes the number of times that the function is composed with itself. It can be seen
that this sequence consists of finite JVFs with p, 2p, . . . , Np, . . . levels. If the infinite fraction
converges to R∞(Z, 0), it follows that,

βpR∞(Z, 0) = F(Z, R∞(Z, 0)) (29)

so R∞(Z, 0) is a fixed point of the iterated composition F. Since the successive iterations are
confined to smaller and smaller spheres in T space it follows that this fixed point is an attractive
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one [12]. Equation (29) can have multiple solutions, of which only the value of the JVF is an
attractive fixed point of the iterated composition. The other solutions are repulsive fixed points
and can be interpreted as continuations of the JVF, analogous to the analytic continuation of
complex continued fractions to additional Riemann sheets.

When considering the convergence of JVF’s in three dimensions, we note that the
discussion in section 6 applies to points which are situated off the X-plane. If Z and T
are in the X-plane however, we can represent them, together with the shifts, by complex
numbers z, t and an instead of two dimensional vectors with real components. The inverse
now involves the complex conjugate, c.c.

1/[z1, z2] = [z1, z2]
/(

z2
1 + z2

2

) = c.c.(1/(z1 + iz2)) (30)

and what is a JVF in Z-space becomes an ordinary continued fraction, not of Jacobi type
because it depends on both z and c.c.(z). The simplifying feature of this is that the levels of
this continued fraction are Möbius transformations in either t or c.c.(t), depending on whether
p is even or odd, respectively. The Möbius transformation f replacing F (or f(2) replacing F(2)

for odd values of p) is a linear fractional transformation in t whose coefficients determine the
nature of the convergence [13]. It thus becomes a simple matter to decompose the X-plane
into regions for which the continued fraction is oscillatory or convergent. This behaviour in
the X-plane turns out to be related to the behaviour of the JVF when Z lies outside the X-plane.

When Z is outside the X-plane the convergence of a particular JVF can be illustrated by
calculating ρN (Z) defined in equation (26), which in turn requires the calculation of PN (Z).
The first step is to replace equation (17) by an equation which is linear in the polynomials.
This can be done by inserting the right hand side of equation (16) into the right hand side of
equation (17) and dividing the result by pN (Z). This yields

pN+1(Z) = |Z − AN |2pN(Z) + β2
NpN−1(Z) − 2βN(Z − AN) × PN(Z)∗ (31)

where Z-space is taken to have an inner product denoted by ‘·’ in which x1, x2, and y are
orthonormal. This equation together with equation (16) and the initial conditions can be used
to calculate pN (Z) over many orders of magnitude.

The calculations have been performed for one particular periodic JVF with a three-fold
symmetric set of shifts defined by

A0 = ax1 A1 = a{cos(2π/3)x1 + sin(2π/3)x2}
A2 = a[cos(4π/3)x1 + sin(4π/3)x2]

An+3 = An a = 0.4 and βn = 1/4.

(32)

The upper bound for the Euclidean distance between RN (Z, 0) and R∞(Z, 0) is the diameter 2
ρN (Z) of the allowed sphere of R-vectors. To compare this with a numerical estimate we have
performed direct calculations of equation (20) for various values of N with T = 0. Instead
of R∞(Z, 0) we have used RM (Z, 0), where M is a large number chosen so that |Rn (Z, 0) −
RM (Z, 0)|/|RM (Z, 0)| is below the floating point error for n > M. Figure 3 provides an example
of the results in logarithmic form, for a point Z at which the convergence is sufficiently slow
that the result remains larger than the rounding error for many levels. It can be seen that both
the directly estimated error and the upper bound decay exponentially with N. One advantage
of the latter estimate is that it can be obtained for much larger values of N because it is not
limited to the rounding error in the subtraction of two numbers of similar magnitude. On the
other hand it diverges as 1/Z · y near the X-plane. The numerical error shows no change in
its qualitative behaviour near the X-plane, provided the JVF converges on the X-plane.

In the complex scalar case there are regions of the real line across which the the imaginary
part of the infinite continued fraction is discontinuous. This behaviour allows the Jacobi
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Figure 3. Comparison of log10(2ρN) (dotted) with log10|RN − R2000| (crosses) versus number of
levels N of periodic JVF evaluated at the point Z = (−0.26)x1 + (0.69)x2 + (0.001)y.

continued fraction to be used to approximate distributions which depend on a single real
variable [7]. It is therefore of interest to look for analogous behaviour in our three-dimensional
example.

Figures 4 and 5 show the magnitude of the y-component of the JVF just under the X-plane.
The sign would be reversed at points just above the X-plane. This provides evidence of a
discontinuity across the X-plane. The four dotted loops in figure 4 refer to the X-plane itself
and are the boundary between convergent, outside the loops, and oscillatory behaviour, inside
the loops, of the complex continued fraction obtained from equation (30). The fact that the
infinite JVF R∞(Z, 0) is undefined at Z · y = 0 inside the loops is consistent with a possible
discontinuity of R∞(Z, 0) · y when the X-plane is traversed.

In addition to the four main lobes, it can be seen that there is an additional isolated peak
which lies outside the four dotted loops. This can be understood by reference to a different
kind of behaviour on the X-plane. Instead of looking for oscillatory behaviour, we consider
the points at which R∞(Z, 0) = ∞. Substituting R∞(Z, 0) = ∞ into equation (29) shows that
the condition for a fixed point at infinity is equivalent to R2(Z, 0) = ∞ which occurs for two
values of Z. At one of these R∞(Z, 0) = ∞ is an attractive fixed point and hence the value of
the JVF at that point is ∞, as illustrated by the isolated spike in figures 4 and 5. At the other
value of Z, R∞(Z, 0) = ∞ is a repulsive fixed point and so is an example of another sheet of
the continuation of R∞(Z, 0).

8. Quadrature and geometry

A strong motivation for attempts to generalize the properties of ordinary continued fractions
and orthogonal polynomials is the search for multi-dimensional quadrature formulae,
generalizations of Gaussian quadrature. We have considered quadratures in relation to the
work described above, and offer some comments below.

Finite JVFs do have discrete, oriented zeros and infinities like the quadrature points
generated by finite Jacobi continued fractions. However, we have constructed examples of



Vector continued fractions using a generalized inverse 171

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

Figure 4. Contour diagram for R3000 · y(x1, x2, −0.001). The contours should be counted inwards,
starting from n = 0 at the outermost solid line on each of the five lobes. The heights of the contours
are then specified to be yn = y0 ek × n where n = 0,1,2 . . . y0 = 0.0864 and k = 0.312 544. It
is expected that the contours will not change much in the limit N → ∞ as this figure cannot be
distinguished from a similar one with 6000 levels. If this limit were to be followed by a second one
namely y → 0, we should expect that the tallest peak would sharpen to a point singularity while
the other sets of contours would be confined to within the four dotted loops.

Figure 5. y · R3000(x1, x2, −0.001) versus x1 and x2. The figure is an orthographic projection of
the contour map shown in figure 4. The peak with the flat top has been truncated by reducing the
vertical range; its true value is 142.37.

JVFs for which the numbers of zeros and infinities do not each increase by one with each
additional level of the fraction. In this regard, JVFs differ from the Jacobi continued fractions
associated with Gaussian quadrature.

We have noted a difference between one-dimensional and multi-dimensional quadratures,
which may be important. One construction of a Gaussian quadrature is to minimize the integral
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of a positive weight distribution over a quadratic form which is the squared magnitude of a
polynomial [14]. The zeros of this minimal polynomial are then the quadrature points, and
the weights are given by integrals over polynomials of lower degree. For one-dimensional
integrals, the minimal polynomial always has the maximum number of distinct zeros; while
for multi-dimensional integrals, minimal multi-nomials do not.

Whether this is related to the above deficiencies in the numbers of zeros and infinities of
JVFs is not clear.

There is current interest in the construction of geometric algebras, for example Clifford
Algebras [15]. Our last comment is to point out that the introduction of an inverse vector used
in this work is a very simple example of a geometric algebra.
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